Criticality of surface topology for charge-carrier transport characteristics in two-dimensional borocarbonitrides: design principles for an efficient electronic material.

نویسندگان

  • Swastika Banerjee
  • Swapan K Pati
چکیده

We have studied the effect of the spatial distribution of B, N and C domains in 2-dimensional borocarbonitrides and its influence on carrier mobility, based on density functional theory coupled with the Boltzmann transport equation. Two extreme features of C-domains in BN-rich B2.5CN2.5, namely, BCN-I (random) and BCN-II (localized), have been found to exhibit an electron (hole) mobility of ∼10(6) cm(2) V(-1) s(-1) (∼10(4) cm(2) V(-1) s(-1)) and ∼10(3) cm(2) V(-1) s(-1) (∼10(6) cm(2) V(-1) s(-1)), respectively. We have ascertained the underlying microscopic mechanisms behind such an extraordinarily large carrier mobility and the reversal of conduction polarity. Finally, we have derived the principle underlying the maximization of mobility and for obtaining a particular (electron/hole) conduction polarity of this nanohybrid in any stoichiometric proportion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Field Dependent Charge Carrier Transport for Organic Semiconductors at the Time of Flight Configuration

In this paper, we used the time-of-flight (TOF) of a charge packet, that injected by a voltage pulse to calculate the drift velocity and mobility of holes in organic semiconducting polymers. The technique consists in applying a voltage to the anode and calculating the time delay in the appearance of the injected carriers at the other contact. The method is a simple way to determine the charge t...

متن کامل

Quantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate

Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

DAMAGE IDENTIFICATION BY USING MODAL EXPANSION AND TOPOLOGY OPTIMIZATION IN THREE DIMENSIONAL ELASTICITY PROBLEMS

In this paper, topology optimization is utilized for damage detection in three dimensional elasticity problems. In addition, two mode expansion techniques are used to derive unknown modal data from measured data identified by installed sensors. Damages in the model are assumed as reduction of mass and stiffness in the discretized finite elements. The Solid Isotropic Material with Penalization (...

متن کامل

On the Six Node Hexagon Elements for Continuum Topology Optimization of Plates Carrying in Plane Loading and Shell Structures Carrying out of Plane Loading

The need of polygonal elements to represent the domain is gaining interest among structural engineers. The objective is to perform static analysis and topology optimization of a given continuum domain using the rational fraction type shape functions of six node hexagonal elements. In this paper, the main focus is to perform the topology optimization of two-dimensional plate structures using Evo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 6 22  شماره 

صفحات  -

تاریخ انتشار 2014